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Wie nutzt man am besten die Nahrstoffe 2
In den Abfallen bel der tierischen !lt
Lebensmittel-Erzeugung?

= Wassrige Reststoffe:
= Biogas-Erzeugung und Nutzung der Garreste

" Feste Reststoffe:

= Verkohlung verschiedener Eingangsmaterialien mit einem Pyrolyse-

Reaktor im Labormalfstab unter verschiedenen Prozessbedingungen

= Weitere Charakterisierung der Kohlen hinsichtlich Nahrstoff-

Verfugbarkeiten und —Ertrage fur P, Anreicherbarkeit der Kohlen mit N
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Ein Schlachthof produziert nicht nur Schnitzel ...~ ©B/KA
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Pyrolyse-Ausrustung an der BOKU
ole

OBIKA

Abluftgeblase

Lanze fur Propan als Brenngas

Brennkammer flr fliichtige Produkte

Sammelbehalter fir feste Produkte
(Biokohle)

Reaktor Vorderansicht

Pyreka-Laborreaktor fur Feststoff-Pyrolysen bei 300-900 °C :



Pyrolyse-Varianten von Schlachtabfallen
ole

&, Rinderknochen ~ OBIKA
96/798 (bovine bones)
al‘e,-/é y heads feet ribs

Pyrolyse 500 °c —

Pyrolyse 500 °C
+ KOH-Kaltaktivierung

Pyrolyse 500 °C + 900 °C +
+ Wasserdampf-Aktivierung

Quelle: Tauber, 2020



Feldkapaznats"-B_estl_mmungen SBIKA
(Wasserhaltefahigkeit, WHC)
Rinderkopfe Rinderful3e Rinderrippen
Field capacity A-samples Field capacity B-samples Field capacity E-samples
- WU [T T T Bam
1 = Eingangsmaterial unpyrolysiert —> 500 °Q ohne Aktivierung am glnstigsten
3 = Pyrolyse 900 °C (mit Wasserdampf) (ca. 100 %|WHC)

4 = Pyrolyse 500 °C

6.1 = Pyrolyse 500 °C + KOH-Kaltaktivierung (5 g BC/| 2M KOH)
6.2 = Pyrolyse 500 °C + KOH-Kaltaktivierung (100 g BC/| 2M KOH)
7 = Pyrolyse 500 °C + Pyrolyse 900 °C (mit Wasserdampf)

Quelle: Tauber, 2020




Element-Analysen auf C, H, N ole

CHN-analysis heads bovine EHN_—anaI\,rsis fe'e.t bovine CHN-analysis rips bovine
- Rinderkapfe ©_Rinderfulte, ~  Rinderrippen
| - o 9% 15 9 15 = _ -
1 11 doddd, d. 11
| ﬂ [ m ml el s, m ﬂ' ‘ D;j - ﬂl - 0. m ﬂ = il il o .
1 = Eingangsmaterial unpyrolysiert ]
3 = Pyrolyse 900 °C (mit Wasserdampf) 2C, H “”S' N-Verluste qurch Pyroly >¢ o
4 = Pyrolyse 500 °C —> Bei 900°C Verluste hoher als bei 500 °C
6.1 = Pyrolyse 500 °C + KOH-Kaltaktivierung (5 g BC/l 2M KOH) = RinderfliRe stabiler gegen
6.2 = Pyrolyse 500 °C + KOH-Kaltaktivierung (100 g BC/I 2M KOH) Verfllichtigungen als Rippen, Kopfe
7 = Pyrolyse 500 °C + Pyrolyse 900 °C (mit Wasserdampf)

Quelle: Tauber, 2020
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CO,-Kompensation durch Biokohle ole

OBIKA

Durchschnittlicher jahrlicher CO,-FulRabdruck pro Person in Deutschland:

Erforderliche Pflanzenkohle Erforderliche Knochenkohle (Rinderfli3e)
Zur Kompensation: Zur Kompensation:

Datenquelle: https://fachverbandpflanzenkohle.org/ 7
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Temperaturabhangigkeit Abhéngigkeit des C- OBIKA

der N-Verflichtigung Eﬁ[‘eﬁitgf'ﬂgﬁ;ﬁ"h'e” vom
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-> N-Verluste insbesondere (iber 500 °C - C-Anreicherung bei pflanzlichen

Komponenten im Inputmaterial
—>C-Abreicherung bei rein tierischem
Material

Quelle: Hollrigl, 2020
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Pyrolysierte Reststoffe: Einfluss Pyrolyse-
Temperatur auf leicht verfigbaren Phosphor

(inmg P/Qg)

Box-Whisker-Plot: mg P/g Zitr.sre.extr.
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Temperatur: 650

Fraktion

mg Plg
Temperatur  Zitr.sre.extr. - 1
Mittel
650 1.098 kizia
500 1.120 ok
350 1.282
Varianzanalyse:

Material: p<0.0001
Temperatur: p=0.016
Wechselwirkung: p=0.0004

O Mittelwert
[ mittelwert+Stdabw.
T Mittelwert+1.96*Stdabw.

£

OBIKA

*kkk

Quelle: Hallrigl, 2020

-> Bei niedrigerer Pyrolyse-Temperatur h6herer Anteil von leicht verfligbaren

o



P

Phosphorgehalt Zitronensaure-extrahierbar (mg P/g)  ¢%e

OBIKA

Zitronensaureextrakt
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Ca. 1-2 % des
Gesamt-P sind

leicht

pflanzenverflgbar

Wasserldslich

<1%
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Quelle: Hollrigl, 2020




Qo
OBIKA
Potentieller Beitrag der pyrolysierten Materialien zur
P-Dungung
_ ) Theoretischer Jleicht pflanzenverfligbar* =
Leicht pflanzenverfugbar Gesamtgehalt in 1 % Citronensaure |8slich

EINSTREU RIND 7,94 102
ROLLSIEBGUT RIND 7,67 167
EINSTREU SCHWEIN 8,62 150
PRESSKNOCHEN SCHWEIN 10,40 1045
RINDERKNOCHEN 20,01 1304

KIEFERKNOCHEN RIND 20,80 1341

Durchschnittlicher Dingebedarf Kulturpflanzen: 20-40 kg P/ha
-> 10 t Knochenkohle / ha deckt einen maRigen P-Diingebedarf Quelle: Hollrigl, 2020




NH,-Sorptionspotential der P

Knochenkohlen oo
Wasserdampfaktiviert mit 900 °C o) BTKA
1,60 KOH-Kaltaktivierung nach 500 °C
1,40

NH, [mg/g]
[ [ r
()] [wa ] =
= = =

5
Quelle: Mayer, 2020
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Sorption nach 26 h aus einer 50 mg/L NH,*-Losung (in NH,CI):
sehr mafiges Sorptionspotential




Einfluss der NH,-Konzentration in der f‘J'.t
Sorbat-Losung auf NH,-Sorption OBIKA
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KOH-Kaltaktivierung nach 500 °C Wasserdampfaktiviert mit 900 °C

—> Hohere NH,*-Konzentration in der Sorptionslosung steigert Sorptionskapazitat deutlich



Konkurrenzversuch NH,— und Mg-
Sorption (gleiche molare Verhaltnisse)

NH, [mg/g]
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—> 25-35 % geringere NH,-Sorption bei lonenkonkurrenz

Quelle: Mayer, 2020

q:q,’\' (bezégen auf NH,")



NH,-Sorption aus einer NH,-Sulfat-
Losung
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- Ahnliche Sorption aus (NH,),SO, und NH,CI
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Stickstoffaufnahme aus N-angereicherteMg
Knochenkohlen in Testpflanzen ~

dry matter (g per pot)
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Pflanzen-Produktivitat
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Knochenkohlen bendtigen N-Anreicherung
Anreicherung mit Garrest wirkt nicht so gut wie mit NH,*-Ldsung, ist aber besser als ohne
Zusatz-N

Kohlen aus Kieferknochen wirken anders als Kohlen aus Rippenknochen
o Zusatzlicher N hebt diese Unterschiede auf

(Soja et al., 2022, submitted) 17



P
Schlussfolgerungen / Zusammenfassung ofe
OBIKA
Pyrolyse:
 Alle festen Reststoffe gut pyrolysierbar, Aufbereitung ofters aufwandig
» Hohe Temperaturen (900 °C) reduzieren Ausbeute stark, auch C-Verluste signifikant
Phosphor-Rezyklierung:
» P-Gehalte von 10-14 % unterstreichen Eignung fiir Diingezwecke
 Geringer Anteil von leicht verfliigharem P = langfristig langsam flieRende P-Quelle
Stickstoff-Sorptionsfahigkeit:
 Knochenkohle-Sorptionspotential bei 10 g NH,/L am hochsten (40-50 mg NH,/g)
 Ohne Aktivierung nur minimale NH,*-Sorption
o Kaltaktivierung mit KOH (2 M) &hnlich erfolgreich wie Wasserdampf-Aktivierung,
erlaubt aber héhere Ausbeute
Stickstoff-Rezyklierung:
e Ammonium-Sorption aus Biogas-Garrest kann an Knochenkohlen sorbiert werden
und ist pflanzenverfiigbar
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